skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Alford, A Addison"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Quasi-linear convective systems (QLCSs) are responsible for approximately a quarter of all tornado events in the U.S., but no field campaigns have focused specifically on collecting data to understand QLCS tornadogenesis. The Propagation, Evolution, and Rotation in Linear System (PERiLS) project was the first observational study of tornadoes associated with QLCSs ever undertaken. Participants were drawn from more than 10 universities, laboratories, and institutes, with over 100 students participating in field activities. The PERiLS field phases spanned two years, late winters and early springs of 2022 and 2023, to increase the probability of intercepting significant tornadic QLCS events in a range of large-scale and local environments. The field phases of PERiLS collected data in nine tornadic and nontornadic QLCSs with unprecedented detail and diversity of measurements. The design and execution of the PERiLS field phase and preliminary data and ongoing analyses are shown. 
    more » « less
  2. null (Ed.)
    Abstract The hurricane boundary layer (HBL) has been observed in great detail through aircraft investigations of tropical cyclones over the open ocean, but the coastal transition of the HBL has been less frequently observed. During the landfall of Hurricane Irene (2011), research and operational aircraft over water sampled the open-ocean HBL simultaneously with ground-based research and operational Doppler radars onshore. The location of the radars afforded 13 h of dual-Doppler analysis over the coastal region. Thus, the HBL from the coastal waterways, through the coastal transition, and onshore was observed in great detail for the first time. Three regimes of HBL structure were found. The outer bands were characterized by temporal perturbations of the HBL structure with attendant low-level wind maxima in the vicinity of rainbands. The inner core, in contrast, did not produce such perturbations, but did see a reduction of the height of the maximum wind and a more jet-like HBL wind profile. In the eyewall, a tangential wind maximum was observed within the HBL over water as in past studies and above the HBL onshore. However, the transition of the tangential wind maximum through the coastal transition showed that the maximum continued to reside in the HBL through 5 km inland, which has not been observed previously. It is shown that the adjustment of the HBL to the coastal surface roughness discontinuity does not immediately mix out the residual high-momentum jet aloft. Thus, communities closest to the coast are likely to experience the strongest winds onshore prior to the complete adjustment of the HBL. 
    more » « less
  3. Abstract Supercells in landfalling tropical cyclones (TCs) often produce tornadoes that can cause fatalities and extensive damage. In previous studies, many tornadoes have been shown to form <50 km from the coast, and their parent storms may also intensify as they cross the coastal boundary. This study uses WSR‐88D observations of TC tornadic mesocyclones from 2011 to 2018 to examine changes in their low‐level rotation upon moving onshore. We will show that radar‐derived azimuthal shear tends to increase in storms that cross the coastal boundary. Similar intensification trends are also found in radar‐derived (supercell) storm‐scale divergence, such that storm‐scale convergence increases as storms move onshore. It is likely changes in the near‐coast vertical wind shear and/or near‐shore convergence helps explain supercell intensification, which is important to consider particularly in operational settings. 
    more » « less
  4. Abstract A mobile Shared Mobile Atmospheric Research and Teaching (SMART) radar was deployed in Hurricane Harvey and coordinated with the Corpus Christi, TX, WSR‐88D radar to retrieve airflow during landfall. Aerodynamic surface roughness estimates and a logarithmic wind profile assumption were used to project the 500‐m radar‐derived maximum wind field to near the surface. The logarithmic wind assumption was justified using radiosonde soundings taken within the storm, while the radar wind estimates were validated against an array of StickNets. For the data examined here, the radar projections had root‐mean‐squared error of 3.9 m/s and a high bias of 2.3 m/s. Mesovorticies in Harvey's eyewall produced the strongest radar‐observed winds. Given the wind analysis, Harvey was, at most, a Category 3 hurricane (50–58 m/s sustained winds) at landfall. This study demonstrates the utility of integrated remote and in situ observations in deriving spatiotemporal maps of wind maxima during hurricane landfalls. 
    more » « less